Semiclassical wave functions for open quantum billiards.
نویسندگان
چکیده
We present a semiclassical approximation to the scattering wave function Ψ(r,k) for an open quantum billiard, which is based on the reconstruction of the Feynman path integral. We demonstrate its remarkable numerical accuracy for the open rectangular billiard and show that the convergence of the semiclassical wave function to the full quantum state is controlled by the mean path length or equivalently the dwell time for a given scattering state. In the numerical implementation a cutoff length in the maximum path length or, equivalently, a maximum dwell time τ(max) included implies a finite energy resolution ΔE~τ(max)(-1). Possible applications include leaky billiards and systems with decoherence present.
منابع مشابه
Semiclassical wave functions and energy spectra in polygon billiards
A consistent scheme of semiclassical quantization in polygon billiards by wave function formalism is presented. It is argued that it is in the spirit of the semiclassical wave function formalism to make necessary rationalization of respective quantities accompanied the procedure of the semiclassical quantization in polygon billiards. First the rational polygon billiards and their unfoldings int...
متن کامل8 J an 2 00 9 Optical microcavities as quantum - chaotic model systems : Openness makes the difference !
Optical microcavities are open billiards for light in which electromagnetic waves can, however, be confined by total internal reflection at dielectric boundaries. These resonators enrich the class of model systems in the field of quantum chaos and are an ideal testing ground for the correspondence of ray and wave dynamics that, typically, is taken for granted. Using phase-space methods we show ...
متن کاملThe boundary integral method for magnetic billiards
We introduce a boundary integral method for two-dimensional quantum billiards subjected to a constant magnetic field. It allows to calculate spectra and wave functions, in particular at strong fields and semiclassical values of the magnetic length. The method is presented for interior and exterior problems with general boundary conditions. We explain why the magnetic analogues of the field-free...
متن کاملDuality between quantum and classical dynamics for integrable billiards.
We establish a duality between the quantum wave vector spectrum and the eigenmodes of the classical Liouvillian dynamics for integrable billiards. Signatures of the classical eigenmodes appear as peaks in the correlation function of the quantum wave vector spectrum. A semiclassical derivation and numerical calculations are presented in support of the results. These classical eigenmodes can be o...
متن کاملSemiclassical theory for transmission through open billiards: convergence towards quantum transport.
We present a semiclassical theory for transmission through open quantum billiards which converges towards quantum transport. The transmission amplitude can be expressed as a sum over all classical paths and pseudopaths which consist of classical path segments joined by "kinks," i.e., diffractive scattering at lead mouths. For a rectangular billiard we show numerically that the sum over all such...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 88 2 شماره
صفحات -
تاریخ انتشار 2013